Deconvolution of Variable-Rate Reservoir Performance Data Using B-Splines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconvolution of Variable-Rate Reservoir-Performance Data Using B-Splines

We use B-splines for representing the derivative of the unknown unit-rate drawdown pressure and numerical inversion of the Laplace transform to formulate a new deconvolution algorithm. When significant errors and inconsistencies are present in the data functions, direct and indirect regularization methods are incorporated. We provide examples of underand over-regularization, and we discuss proc...

متن کامل

Interpolation of fuzzy data by using flat end fuzzy splines

In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.

متن کامل

Numerical solution of functional integral equations by using B-splines

This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.

متن کامل

Diffeomorphic Registration Using B-Splines

In this paper we propose a diffeomorphic non-rigid registration algorithm based on free-form deformations (FFDs) which are modelled by B-splines. In contrast to existing non-rigid registration methods based on FFDs the proposed diffeomorphic non-rigid registration algorithm based on free-form deformations (FFDs) which are modelled by B-splines. To construct a diffeomorphic transformation we com...

متن کامل

Variable degree polynomial splines are Chebyshev splines

Variable degree polynomial (VDP) splines have recently proved themselves as a valuable tool in obtaining shape preserving approximations. However, some usual properties which one would expect of a spline space in order to be useful in geometric modeling, do not follow easily from their definition. This includes total positivity (TP) and variation diminishing, but also constructive algorithms ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SPE Reservoir Evaluation & Engineering

سال: 2006

ISSN: 1094-6470,1930-0212

DOI: 10.2118/95571-pa